Step of Proof: gen_hyp_tp
9,38
postcript
pdf
Inference at
*
1
1
4
2
1
I
of proof for Lemma
gen
hyp
tp
:
1.
A
: Type
2.
e
:
A
3.
H
:
A
Type
4.
x
:
A
5.
e
=
x
6.
z
:
H
(
e
)
7.
A
Type
8.
e
A
9.
x
:
A
. (
e
=
x
)
Type
z
0
latex
by (\p.let A = get_term_arg `A` p
b
in let x = get_term_arg `x` p
bin
in let e = get_term_arg `e` p
b
in
bi
At (get_term_arg `UH` p)
bi
(Subst
bi(Sub
(
mk_equal_term
mk_equa
(mk_set_term (dv x) A (mk_equal_term A e x))
mk_equa
e
mk_equa
x)
mk_equax
(get_int_arg `i` p + 2)) p)
latex
1
:
1:
6.
z
:
H
(
x
)
1:
7.
A
Type
1:
8.
e
A
1:
9.
x
:
A
. (
e
=
x
)
Type
1:
z
0
2
: .....wf..... NILNIL
2:
z1
:{
x
:
A
|
e
=
x
} .
H
(
z1
)
Type
3
: .....equality..... NILNIL
3:
e
=
x
.
Definitions
t
T
,
x
:
A
.
B
(
x
)
origin